Linx

Blatchford is the first, and currently only, company in the world to have a fully-integrated limb system available on the prosthetic market. The limb combines existing technology from Blatchford's Orion3 microprocessor-controlled knee and Elan microprocessor-controlled hydraulic ankle, utilising the individual sensors in both and collating the information within one central control unit in real-time.

This ability to actively sense and analyse data on user movement, activity, environment and terrain provides situational awareness. A coordinated stream of instructions to the hydro-pneumatic support system enables the limb to make continuous adjustments across both joints in unison, providing biomimetic behaviour. This not only allows for a more natural gait, reducing the need for compensations and the magnitude of irregular forces acting on joints, but improves the safety of the user, ensuring efficient swing through and placement of the limb and adapting resistances for more stability during stance.

Improvements in Clinical Outcomes using Linx compared to mechanical knees

Improvement in **SAFETY**

- Significantly reduced number of falls^{1,2}
- Reduced centre-of-pressure fluctuations by 9-11% with standing support active when standing on sloped ground³
- Less cognitive demand during walking, leading to reduced postural sway⁴

Improvement in **MOBILITY**

- Increased walking speed⁵
- Easier to walk at different speeds⁶
- Higher scores in mobility-related patient-reported outcome measures⁷
- More natural gait^{6,8}
- Easier to walk on slopes⁶

Improvement in **ENERGY EXPENDITURE**

- Reduced energy expenditure compared to mechanical knees⁹⁻¹³
- Equivalent energy expenditure to other MPKs¹⁴
- Reduced self-perceived effort^{6,8}
- Energy expenditure closer to that of able-bodied control subjects¹⁵
- Able to walk further before becoming tired⁶

Improvement in **SYMMETRY**

- Better step length symmetry⁵
- Reduced loading asymmetry with standing support active when standing on sloped ground³

Improvement in USER SATISFACTION

Reduced fear of falling¹

- Reduced limitations due to an emotional problem⁸
- Preference over other prosthetic knees^{1,6}
- Greater prosthetic confidence in slope descent and gait termination¹⁶

Improvement in **HEALTH ECONOMICS**

Reductions in direct and indirect healthcare costs when using an MPK¹⁷

Improvements in Clinical Outcomes using Linx compared to ESR feet

Improvement in **SAFETY**

- Reduced risk of tripping and falls
 - Increased minimum toe clearance during swing phase^{18,19}
- Improved knee stability on the prosthetic side during slope descent
 - Increased mid-stance external prosthetic knee extensor moment²⁰
- Improving standing balance on a slope
 - 24-25% reduction in mean inter-limb centre-of-pressure root mean square (COP RMS)³

Improvement in **ENERGY CONSUMPTION**

- Reduced energy expenditure during walking
 - Mean 11.8% reduction in energy use on level ground, across all walking speeds²¹
 - Mean 20.2% reduction in energy use on slopes, across all gradients²¹
 - Mean 8.3% faster walking speed for the same amount of effort²¹

Improvement in MOBILITY

- Improved gait performance
 - Faster self-selected walking speed^{18,22-25}
- Improved ground compliance when walking on slopes
 - Increased plantarflexion peak during level walking, fast level walking and cambered walking²⁶
 - Increased dorsiflexion peak during level walking, fast level walking and cambered walking²⁶
- · Less of a prosthetic "dead spot" during gait
 - Reduced aggregate negative COP displacement²³
 - Centre-of-pressure passes anterior to the shank statistically significantly earlier in stance²³
 - Increased minimum instantaneous COM velocity during prosthetic-limb single support phase²³
 - Reduced peak negative COP velocity²⁵
 - Reduced COP posterior travel distance²⁵
- Improved ground compliance when walking on slopes
 - Increased plantarflexion range during slope descent¹⁹
 - Increased dorsiflexion range during slope ascent¹⁹

- Less effort on residual hip for trans-femoral amputees on varied terrains
 - Reduced the mean hip extension and flexion moments²⁷
- Effects consistent over time
 - Same gait variable changes in two gait lab sessions one year apart²²
 - Magnitude of changes comparable between sessions²²
- Brake mode during slope descent to control momentum build up
 - Reduced mean prosthetic shank angular velocity in single support²⁸
 - Increased Unified Deformable Segment (prosthetic 'ankle') negative work²⁸
- Less gait compensation movements during slope descent
 - Reduced residual knee flexion at loading response²⁸

Improvement in RESIDUAL LIMB HEALTH

- Helps protect vulnerable residual limb tissue, reducing likelihood of damage
 - Reduced peak stresses on residual limb²⁹
 - Reduced stress RMS on residual limb²⁹
 - Reduced loading rates on residual limb²⁹

Improvement in LOADING SYMMETRY

- Greater contribution of prosthetic limb to support during walking
 - Increased residual knee peak extension moment²²
 - Decreased residual knee peak flexion moment²²
 - Increased residual knee negative work²⁴
- Reduced reliance on sound limb for support during walking
 - Reduced intact limb peak hip flexion moment²⁴
 - Reduced intact limb peak dorsiflexion moment²⁴
 - Reduced intact ankle negative work and total work²⁴
 - Reduced intact limb total joint work²⁴
- Better symmetry of loading between prosthetic and sound limbs during standing on a slope
 - Degree of asymmetry closer to zero for 5/5 amputees²⁰
- Reduced residual and sound joint moments during standing of a slope
 - Significant reductions in both prosthetic and sound support moments³⁰
- Reduced residual joint moments during standing of a slope for bilateral amputees
 - Significant reductions in prosthetic support moment³⁰
 - Permitted 'natural' ground reaction vector sagittal plane position, relative to knee joint centres³⁰
- Less pressure on the sole of the contralateral foot
 - Peak plantar-pressure³¹
- Improved gait symmetry
 - Reduced stance phase timing asymmetry³²

Improvement in USER SATISFACTION

- Patient reported outcome measures indicate improvements
 - Mean improvement across all Prosthesis Evaluation Questionnaire domains³³
 - Bilateral patients showed highest mean improvement in satisfaction³³

- Subjective user preference for hydraulic ankle
 - 13/13 participants preferred hydraulic ankle³¹

Improvements in Clinical Outcomes using Linx compared to non-microprocessor-control hydraulic ankle-feet

Improvement in **SAFETY**

- Improved knee stability on the prosthetic side during slope descent
 - Increased mid-stance external prosthetic knee extensor moment¹⁹

Improvement in MOBILITY

- Improved ground compliance when walking down slopes
 - Reduced time to foot flat²⁸
- Brake mode during slope descent increases resistance to dorsiflexion to control momentum build up
 - Reduced dorsiflexion range during slope descent¹⁹
 - Reduced mean prosthetic shank angular velocity in single support²⁸
 - Increased Unified Deformable Segment (prosthetic 'ankle') negative work²⁸
 - Transition from dorsiflexion to plantarflexion moment occurs earlier in stance phase³⁴
 - Increase in mean prosthetic 'ankle' plantarflexion moment integral³⁴
- Assist mode during slope ascent decreases resistance to dorsiflexion to allow easier progression
 - Transition from dorsiflexion to plantarflexion moment occurs later in stance phase³⁴
 - Decrease in mean prosthetic 'ankle' plantarflexion moment integral³⁴
- Less gait compensation movements during slope descent
 - Reduced residual knee flexion at loading response²⁸

Improvement in LOADING SYMMETRY

- Greater reliance on prosthetic side for bodyweight support during slope descent
 - Increased support moment integral³⁴
- Less reliance on sound side for bodyweight support during slope descent
 - Decreased support moment integral³⁴
- Less reliance on sound side for bodyweight support during slope ascent
 - Decreased support moment integral³⁴
- · Reduced sound joint moments during standing of a slope
 - Significant reductions in sound support moment³⁰
- Reduced residual joint moments during standing of a slope for bilateral amputees
 - Significant reductions in prosthetic support moment³⁰
 - Permitted 'natural' ground reaction vector sagittal plane position, relative to knee joint centres³⁰

Greater prosthetic confidence in slope descent and gait termination¹⁶

References

- Kaufman KR, Bernhardt KA, Symms K. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Clin Biomech 2018; 58: 116–122.
- 2. Campbell JH, Stevens PM, Wurdeman SR. OASIS 1: Retrospective analysis of four different microprocessor knee types. Journal of Rehabilitation and Assistive Technologies Engineering. 2020 Nov;7:2055668320968476.
- 3. McGrath M, Laszczak P, Zahedi S, et al. Microprocessor knees with 'standing support' and articulating, hydraulic ankles improve balance control and inter-limb loading during quiet standing. J Rehabil Assist Technol Eng 2018; 5: 2055668318795396.
- Heller BW, Datta D, Howitt J. A pilot study comparing the cognitive demand of walking for transferoral amputees using the Intelligent Prosthesis with that using conventionally damped knees. Clin Rehabil 2000; 14: 518–522.
- 5. Chin T, Maeda Y, Sawamura S, et al. Successful prosthetic fitting of elderly transfemoral amputees with Intelligent Prosthesis (IP): a clinical pilot study. Prosthet Orthot Int 2007; 31: 271–276.
- 6. Datta D, Howitt J. Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees: user's verdict. Prosthet Orthot Int 1998; 22: 129–135.
- 7. Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology. Assist Technol 2018; 1–7.
- 8. Saglam Y, Gulenc B, Birisik F, et al. The quality of life analysis of knee prosthesis with complete microprocessor control in trans-femoral amputees. Acta Orthop Traumatol Turc 2017; 51: 466e469.
- Chin T, Sawamura S, Shiba R, et al. Energy expenditure during walking in amputees after disarticulation of the hip: a microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee. J Bone Joint Surg Br 2005; 87: 117–119.
- 10. Datta D, Heller B, Howitt J. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control. Clin Rehabil 2005; 19: 398–403.
- 11. Buckley JG, Spence WD, Solomonidis SE. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism. Arch Phys Med Rehabil 1997; 78: 330–333.
- 12. Taylor MB, Clark E, Offord EA, et al. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally

- damped prosthetic limbs. Prosthet Orthot Int 1996; 20: 116–121.
- 13. Kirker S, Keymer S, Talbot J, et al. An assessment of the intelligent knee prosthesis. Clin Rehabil 1996; 10: 267–273.
- Chin T, Machida K, Sawamura S, et al. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Prosthet Orthot Int 2006; 30: 73–80.
- Chin T, Sawamura S, Shiba R, et al. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with ablebodied people. Am J Phys Med Rehabil 2003; 82: 447–451.
- Abdulhasan ZM, Scally AJ, Buckley JG. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Clin Biomech Bristol Avon 2018; 57: 35–41.
- 17. Chen C, Hanson M, Chaturvedi R, et al. Economic benefits of microprocessor controlled prosthetic knees: a modeling study. J Neuroengineering Rehabil 2018; 15: 62.
- 18. Riveras M, Ravera E, Ewins D, Shaheen AF, Catalfamo-Formento P. Minimum toe clearance and tripping probability in people with unilateral transtibial amputation walking on ramps with different prosthetic designs. Gait & Posture. 2020 Sep 1;81:41-8.
- Johnson L, De Asha AR, Munjal R, et al. Toe clearance when walking in people with unilateral transtibial amputation: effects of passive hydraulic ankle. J Rehabil Res Dev 2014; 51: 429.
- 20. Bai X, Ewins D, Crocombe AD, et al. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees. PLOS ONE 2018; 13: e0205093.
- 21. Askew GN, McFarlane LA, Minetti AE, et al. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics. J NeuroEngineering Rehabil 2019; 16: 39.
- 22. De Asha AR, Barnett CT, Struchkov V, et al. Which Prosthetic Foot to Prescribe?: Biomechanical Differences Found during a Single-Session Comparison of Different Foot Types Hold True 1 Year Later. JPO J Prosthet Orthot 2017; 29: 39–43.
- 23. De Asha AR, Munjal R, Kulkarni J, et al. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle–foot device in unilateral trans-tibial and trans-femoral amputees. Clin Biomech 2014; 29: 728–734.
- 24. De Asha AR, Munjal R, Kulkarni J, et al. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping. J Neuroengineering Rehabil 2013; 10: 1.
- 25. De Asha AR, Johnson L, Munjal R, et al. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment. Clin Biomech 2013; 28: 218–224.

- 26. Bai X, Ewins D, Crocombe AD, et al. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking. PLOS ONE 2017; 12: e0180836.
- 27. Alexander N, Strutzenberger G, Kroell J, et al. Joint Moments During Downhill and Uphill Walking of a Person with Transfemoral Amputation with a Hydraulic Articulating and a Rigid Prosthetic Ankle—A Case Study. JPO J Prosthet Orthot 2018; 30: 46–54.
- 28. Struchkov V, Buckley JG. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional anklefoot mechanisms. Clin Biomech 2016; 32: 164–170.
- 29. Portnoy S, Kristal A, Gefen A, et al. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Gait Posture 2012; 35: 121–125.
- 30. McGrath M, Davies KC, Laszczak P, et al. The influence of hydraulic ankles and microprocessor-control on the biomechanics of trans-tibial amputees during quiet standing on a 5° slope. Can Prosthet Orthot J; 2.
- 31. Moore R. Effect of a Prosthetic Foot with a Hydraulic Ankle Unit on the Contralateral Foot Peak Plantar Pressures in Individuals with Unilateral Amputation. JPO J Prosthet Orthot 2018; 30: 165–70.
- 32. Moore R. Effect on Stance Phase Timing Asymmetry in Individuals with Amputation Using Hydraulic Ankle Units. JPO J Prosthet Orthot 2016; 28: 44–48.
- 33. Sedki I, Moore R. Patient evaluation of the Echelon foot using the Seattle Prosthesis Evaluation Questionnaire. Prosthet Orthot Int 2013; 37: 250–254.
- 34. McGrath M, Laszczak P, Zahedi S, et al. The influence of a microprocessor-controlled hydraulic ankle on the kinetic symmetry of trans-tibial amputees during ramp walking: a case series. J Rehabil Assist Technol Eng 2018; 5: 2055668318790650.