Elite2

Elite2 is an energy-storing-and-return prosthetic foot, which uses e-carbon foot springs to efficiently absorb energy during weight bearing and return it during off-loading, in order to aid propulsion. The C-shaped heel spring allows >10mm of vertical compliance when loaded axially and maximises the energy return. The split toe spring, in combination with the separate heel spring, permits a tripod design for exceptional ground compliance.

Clinical Outcomes using e-carbon feet

Much research confirms the substantial equivalency of all energy-storing and return feet, including Blatchford e-carbon feet¹.

With respect to **SAFETY**

• High mean radius of curvature for Esprit-style e-carbon feet²: "The larger the radius of curvature, the more stable is the foot"

With respect to **MOBILITY**

- Allow variable running speeds³
- Increased self-selected walking speed⁴
- Elite-style e-carbon feet (L code VL5987) or VT units demonstrate the second highest mobility levels, behind only microprocessor feet⁵

With respect to LOADING SYMMETRY

- Users demonstrate confidence in prosthetic loading during high activity⁶
- Improved prosthetic push-off work compared to SACH feet⁷
- Increased prosthetic positive work done⁴

With respect to **USER SATISFACTION**

• High degree of user satisfaction, particularly with high activity users⁸

References

1. Crimin A, McGarry A, Harris EJ, et al. The effect that energy storage and return feet have on the propulsion of the body: A pilot study. Proc Inst Mech Eng [H] 2014; 228: 908–915.

2. Curtze C, Hof AL, van Keeken HG, et al. Comparative roll-over analysis of prosthetic feet. J Biomech 2009; 42: 1746–1753.

3. Strike SC, Arcone D, Orendurff M. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Gait Posture 2018; 62: 327–332.

4. Ray SF, Wurdeman SR, Takahashi KZ. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. J Neuroengineering Rehabil 2018; 15: 6.

5. Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of AmpuTees (MAAT 5): Impact of five common prosthetic ankle-foot categories for individuals with diabetic/dysvascular amputation. J Rehabil Assist Technol Eng 2019; 6: 2055668318820784.

6. Haber CK, Ritchie LJ, Strike SC. Dynamic elastic response prostheses alter approach

angles and ground reaction forces but not leg stiffness during a start-stop task. Hum Mov Sci 2018; 58: 337–346.

7. Rock CG, Wurdeman SR, Stergiou N, Takahashi KZ. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses. PloS one. 2018;13(10).

8. Highsmith MJ, Kahle JT, Miro RM, et al. Differences in Military Obstacle Course Performance Between Three Energy-Storing and Shock-Adapting Prosthetic Feet in High-Functioning Transtibial Amputees: A Double-Blind, Randomized Control Trial. Mil Med 2016; 181: 45–54.